Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
Dies ist Version . Es handelt sich nicht um die aktuelle Version und kann folglich auch nicht geändert werden.
[Zurück zur aktuellen Version]    [Diese Version wiederherstellen]
vom 19.07.2014, aktuelle Version,

Thymin

Strukturformel
Allgemeines
Name Thymin
Andere Namen
  • 5-Methyluracil
  • 2,4-Dioxo-5-methylpyrimidin (IUPAC)
  • 5-Methyl-2,4(1H,3H)-pyrimidindion
Summenformel C5H6N2O2
Kurzbeschreibung

weißer, kristalliner Feststoff[1]

Externe Identifikatoren/Datenbanken0[Ein-/ausblenden]
CAS-Nummer 65-71-4
PubChem 1135
DrugBank DB03462
Wikidata Q171973
Eigenschaften
Molare Masse 126,04 g·mol−1
Aggregatzustand

fest

Dichte

1,46 g·cm−3[2]

Schmelzpunkt

316–317 °C[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze [1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Thymin (T, Thy, 5-Methyluracil) ist eine der vier wichtigsten Nukleinbasen in der DNA, zusammen mit Adenin, Cytosin und Guanin. In der RNA steht an seiner Stelle Uracil. Es ist eine heterocyclische organische Verbindung mit einem Pyrimidingrundgerüst und drei Substituenten (Sauerstoffatome an den Positionen 2 und 4, Methylgruppe an Position 5). Die Nukleoside von Thymin sind das Desoxythymidin in der DNA und das seltene Ribothymidin in der RNA (z. B. in der tRNA). In der Watson-Crick-Basenpaarung bildet es zwei Wasserstoffbrücken mit Adenin.

Darstellung und Gewinnung

Eine Isolierung kann aus Rinderhirnen oder Kabeljau-Rogen erfolgen.[3][4]

Eine synthetische Darstellung gelingt durch Cyclisierung von N-Ethoxycarbonyl-3-methoxy-2-methylacrylamid in wässriger Ammoniaklösung.[5]

Eine weitere Synthese geht von 3-Methyläpfelsäure aus, welche in rauchender Schwefelsäure decarboxyliert und mit Harnstoff kondensiert wird.[6]

Eigenschaften

Physikalische Eigenschaften

Thymin bildet glänzende, bitter schmeckende, nadelförmige oder prismenförmige Kristalle[7], die bei 335–337 °C unter Zersetzung schmelzen.[8] Die Verbindung löst sich gut in heißem Wasser, in Alkohol und Ether ist die Löslichkeit gering.[7] In alkalischen Medien löst es sich unter Salzbildung infolge einer Enolatbildung abgeleitet von der Enolform 5-Methyl-2,4-pyrimidindiol.[8]

Chemische Eigenschaften

Prinzipiell kann Thymin in sechs tautomeren Strukturen vorliegen. Die Lactamform (1) wird aber gegenüber den Enolformen bevorzugt.[9]

Biologische Bedeutung

Thymin kann Bestandteil der DNA oder verschiedener Nukleoside und Nukleotide sein.

Nukleoside

Über das N1-Atom des Ringes kann Thymin an das C1-Atom der Desoxyribose N-glycosidisch gebunden werden; man spricht dann von einem Nukleosid, dem Desoxythymidin. Bei der Bindung an Ribose entsteht das Nukleosid Ribothymidin.

Desoxythymidin, dT Ribothymidin, T

Nukleotide

Über die Phosphorylierung des Thymidins am C5-Atom der Ribose gelangt man zu den wichtigen Nukleotiden Desoxythymidinmonophosphat (dTMP), Desoxythymidindiphosphat (dTDP) und Desoxythymidintriphosphat (dTTP).

Strukturformel von dTTP

Bestandteil der DNA

In der DNA-Doppelhelix bildet Thymin über die 4-Oxogruppe und die N3–H-Gruppe zwei Wasserstoffbrücken mit der zugehörigen Adenin-Base des komplementären Stranges aus.

Strukturformel eines A-T-Basenpaars

Vergleich von Thymin und Uracil

In der DNA tritt Thymin an die Stelle von Uracil. Uracil kann relativ einfach durch Desaminierung und Hydrolyse aus Cytosin entstehen, was einer Veränderung des genetischen Codes gleichkäme.

Desaminierung von Cytosin zu Uracil

Thymin hingegen unterscheidet sich vom Uracil durch eine zusätzliche Methylgruppe und kann so auch nicht ohne weiteres aus Cytosin entstehen. In der DNA vorhandenes Uracil kann somit als Mutation erkannt und durch Basenexzisionsreparatur gegen Cytosin ausgetauscht werden. Im Gegensatz zu DNA ist RNA relativ kurzlebig, mutierte Basen in einzelnen RNAs werden vom Organismus problemlos toleriert, was eine Verwendung des einfacher herzustellenden Uracils zweckmäßig erscheinen lässt.

Thymindimer

Bei Thymindimeren handelt es sich um eine DNA-Mutation, welche durch UV-Strahlung induziert wird. Dabei verbinden sich zwei auf einem DNA-Strang nebeneinanderliegende Thymin-Basen über eine [2+2]-Cycloaddition kovalent zu einem Dimer, das ein relativ stabiles Cyclobutan-Derivat ist.

Bildung eines Thymindimers [10]

Besonders anfällig für eine solche Mutation sind Hautzellen, die dem Sonnenlicht ausgesetzt sind. Aus diesem Grund werden Thymindimere als eine wesentliche Ursache für die Entstehung von Hautkrebs diskutiert.[11]

Verwendung

Thymin dient als Ausgangsstoff für einige Arzneistoffe wie z. B. Zidovudin, Telbivudin und Clevudin.

Verwandte Verbindungen

Uracil 3-Methyluracil

Einzelnachweise

  1. 1 2 3 4 Datenblatt Thymin bei AlfaAesar, abgerufen am 23. November 2013 (JavaScript erforderlich).
  2. K. Ozeki, N. Sakabe, J. Tanaka: „The crystal structure of thymine“, in: Acta Cryst., 1969, B25, S. 1038 (doi:10.1107/S0567740869003505).
  3. Shimizu: Biochem. Zeitschrift, 1921, 117, S. 262.
  4. König, Grossfeld: Biochem. Zeitschrift, 1913, 54, S. 371.
  5. G. Shaw, R. N. Warrener: „33. Purines, pyrimidines, and glyoxalines. Part VIII. New syntheses of uracils and thymines“, in: J. Chem. Soc., 1958, S. 157–161 (doi:10.1039/jr9580000157).
  6. H. W. Scherp: „Convenient Syntheses of Thymine and 5-Methylisocytosine“, in: J. Am. Chem. Soc., 1946, 68, S. 912–913 (doi:10.1021/ja01209a510).
  7. 1 2 Brockhaus ABC Chemie, Verlag Harri Deutsch Frankfurt/Main und Zürich 1965.
  8. 1 2 Römpp Online – Chemie Lexikon, abgerufen am 21. April 2009.
  9. S. Hauptmann, J. Gräfe, H. Remane: Lehrbuch der organischen Chemie, VEB Deutscher Verlag der Grundstoffindustrie, Leipzig 1980, S. 556.
  10. K. Peter C. Vollhardt, Neil E. Schore: Organische Chemie, 4. Auflage, Wiley-VCH, Weinheim 2005, ISBN 3-527-31380-X, S. 181.
  11. Alberts, Bray, Johnson, Lewis: Lehrbuch der molekularen Zellbiologie, 2. korrigierte Auflage, Wiley-VCH, Weinheim 2001, ISBN 3-527-30493-2.
  Commons: Thymin  – Sammlung von Bildern, Videos und Audiodateien
  • Eintrag zu Thymine in der Human Metabolome Database (HMDB), abgerufen am 18. November 2013.
  • Vorlage:Wikigenes