Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
Dies ist Version . Es handelt sich nicht um die aktuelle Version und kann folglich auch nicht geändert werden.
[Zurück zur aktuellen Version]    [Diese Version wiederherstellen]
vom 29.05.2014, aktuelle Version,

Spur (Mathematik)

Die Spur (Spurfunktion, Spurabbildung) ist ein Konzept in den mathematischen Teilgebieten der Linearen Algebra sowie der Funktionalanalysis und wird auch in der Theorie der Körper und Körpererweiterungen verwendet.

Die Spur in der linearen Algebra

Definition

In der linearen Algebra bezeichnet man als die Spur einer quadratischen -Matrix über einem Körper die Summe der Hauptdiagonalelemente dieser Matrix. Für die Matrix

ist also

Gilt , so bezeichnet man die Matrix als spurfrei.

Statt sind auch die Schreibweisen , , oder oder vom englischen Begriff trace abgeleitet auch , , oder gebräuchlich.

Eigenschaften

  • Die Spur einer reellen oder komplexen Matrix ist die Summe ihrer Eigenwerte (aller Eigenwerte mit Vielfachheit, auch der komplexen). Im charakteristischen Polynom tritt sie als zweithöchster Koeffizient auf. Sie hat also eine ähnliche Bedeutung wie die Determinante, die das Produkt aller Eigenwerte ist.
  • Die Spur ist eine lineare Abbildung, das heißt, für -Matrizen und sowie gilt
  • Unter der Spur dürfen Matrizen und vertauscht werden, das heißt
  • Aus der letzten Eigenschaft folgt die Invarianz der Spur unter zyklischen Vertauschungen, also für -Matrizen , und
  • Weiter folgt hieraus, dass die Spur invariant unter Basistransformationen ist. Für eine -Matrix und eine invertierbare -Matrix gilt
  • Sind und -Matrizen, wobei positiv definit und nicht negativ ist, so gilt
  • Ist symmetrisch und anti-symmetrisch, so gilt
  • Die Spur einer reellen oder komplexen idempotenten Matrix ist gleich ihrem Rang, das heißt es gilt

    (Für Matrizen mit Einträgen aus einem anderen Körper gilt diese Identität nur modulo der Charakteristik des Körpers.)
  • Für alle reellen oder komplexen -Matrizen gilt

    wobei das Matrixexponential von bezeichnet.
  • Umgekehrt gilt für jede diagonalisierbare reelle Matrix

    (Die Identität beruht darauf, dass man Funktionen diagonalisierbarer Matrizen – hier den natürlichen Logarithmus – über die Eigenwerte definieren kann.)
  • Mittels lässt sich das Frobenius-Skalarprodukt auf den (reellen oder komplexen) -Matrizen definieren, so dass wegen der Cauchy-Schwarzschen Ungleichung gilt

Spur eines Endomorphismus

Ist ein endlichdimensionaler Vektorraum und eine lineare Abbildung, also ein Endomorphismus von , so definiert man die Spur von als die Spur einer Darstellungsmatrix von bezüglich einer beliebigen Basis von . Nach den obengenannten Eigenschaften ist die Spur unabhängig von der Wahl dieser Basis.

Koordinatenfreie Definition der Spur

Ist ein endlichdimensionaler -Vektorraum, so kann man den Raum der Endomorphismen auf mit identifizieren via . Weiter ist die natürliche Paarung eine kanonische bilineare Abbildung , die aufgrund der universellen Eigenschaft des Tensorprodukts eine lineare Abbildung induziert. Man sieht leicht ein, dass diese unter der obigen Identifikation gerade die Spur eines Endomorphismus ist.

Die Spur in der Funktionalanalysis

Spurklasseoperator

Hauptartikel: Spurklasseoperator

Das Konzept der Spur in der linearen Algebra kann auch auf unendlichdimensionale Räume ausgedehnt werden. Ist ein Hilbertraum mit einer Orthonormalbasis , dann definiert man für einen Operator die Spur mittels

falls die Summe existiert. Die Endlichkeit der Summe ist abhängig von der Wahl der Orthonormalbasis. Operatoren, für die dies der Fall ist (diese sind immer kompakt), also deren Supremum über alle Orthonormalbasen existiert, werden Spurklasseoperatoren genannt. Viele Eigenschaften der Spur aus der linearen Algebra übertragen sich unmittelbar auf Spurklasseoperatoren.

Anwendung in der Quantenmechanik

In der Quantenmechanik beziehungsweise der Quantenstatistik verallgemeinert man den Begriff der Spur so, dass auch Operatoren erfasst werden, die keine Spurklasseoperatoren sind. Und zwar brauchen diese Operatoren, wie zum Beispiel der grundlegende Hamiltonoperator (Energie-Operator) des Systems, nur selbstadjungiert zu sein. Sie besitzen dann eine Spektraldarstellung , wobei das Spektrum von ist, während λ eine Zahl der reellen Achse ist und die Integrale Projektionsoperatoren auf die zu λ gehörigen Eigenfunktionen (Punktspektrum!) bzw. Eigenpakete (kontinuierliches Spektrum) sind. Es gilt dann, wenn man es zum Beispiel mit einer Abbildung von Operatoren zu tun hat, etwa mit der Exponentiation eines Operators,

Dabei ist ein zu den oben definierten Projektionsoperatoren passendes Maß, z. B. im Falle des Punktspektrums das Diracmaß, wobei der betrachtete Eigenwert ist, und die bei zentrierte Delta-Distribution. Der Parameter T hat in konkreten Fällen die Bedeutung der Kelvin-Temperatur des Systems, und es wurde die Regel benutzt, dass alle Funktionen eines Operators, , dieselben Eigenvektoren besitzen wie schon der Operator A selbst, während die Eigenwerte sich ändern, .

Auch wenn das Integral für divergieren würde, ist die Anwendung der Formel u.U. sinnvoll, weil die Spurbildung in der Quantenstatistik fast immer in der Kombination auftritt. Diese Kombination ist der sogenannte Thermische Erwartungswert der Messgröße, bei dem sich eventuelle Divergenzen im Zähler und im Nenner gegenseitig kompensieren würden.

Verwandte Integrale können also auch dann konvergieren, wenn der Operator A nicht der Spurklasse angehört. In diesem Fall ist der Ausdruck beliebig genau durch Summen von Spurklasse-Operatoren (sogar durch endliche Summen) approximierbar, ähnlich wie Integrale so angenähert werden können.

Jedenfalls empfiehlt es sich, bei der Frage der Konvergenz der betrachteten Ausdrücke pragmatisch vorzugehen und z. B. im vorliegenden Fall zu beachten, dass eventuelle Spektralanteile, die betragsmäßig sehr viel größer sind als der Temperaturfaktor T, exponentiell klein werden.

In der Quantenstatistik tritt die Partialspur auf, welche als Verallgemeinerung der Spur aufgefasst werden kann. Für einen Operator , der auf dem Produktraum lebt, ist die Spur gleich der Hintereinanderausführung der Partialspuren über und : .

Die Spur in Körpererweiterungen

Ist eine endliche Körpererweiterung, dann ist die Spur eine -lineare Abbildung von nach . Fasst man als -Vektorraum auf, dann definiert man die Spur eines Elementes als die Spur der Darstellungsmatrix der Abbildung .

Literatur