"Tischlein deck dich" in der Tiefsee#
Was uns "Metaproteomics" über den Geschmack von Tiefsee-Mikroorganismen verrät#
In den sonnendurchfluteten Oberflächenschichten des Meeres wird organisches Material produziert, das als Basis des Nahrungsnetzes dient und auch größtenteils im Oberflächengewässer in Kohlendioxid und anorganische Nährstoffe zerlegt wird. Nur rund 10 bis 20 Prozent des organischen Materials sinkt in die Tiefen des Ozeans und dient den Lebensgemeinschaften der Tiefsee als Nahrungsquelle. Der Abbau von organischem Material wird dort vorwiegend von einer komplexen mikrobiellen Gemeinschaft bewerkstelligt, deren Zusammensetzung und Stoffwechsel sich mit zunehmender Tiefe ändert. Ein internationales ForscherInnen-Konsortium um Kristin Bergauer und Gerhard J. Herndl von der Universität Wien konnte durch die Analyse von Proteinen von Tiefsee-Mikroben faszinierende Einblicke in deren Ökologie und die biogeochemischen Prozesse hinter dem Kreislauf von Kohlenstoff und anderen Elementen gewinnen. Die Ergebnisse der Studie erscheinen aktuell im renommierten Fachjournal "PNAS".
Im Oberflächengewässer betreiben einzellige Algen Photosynthese und teilen sich etwa alle zwei Tage. Diese einzelligen Algen stellen die Basis des ozeanischen Nahrungsnetzes dar. Der größte Teil dieser Algenbiomasse wird vom tierischen Plankton gefressen und deren Kotballen sinken dann als Partikelregen in die Tiefsee und dienen den Tiefseelebewesen als Nahrungsquelle. Der überwiegende Teil dieser Partikel wird von Mikroben zersetzt. Allerdings können diese Mikroben nur Nahrung in gelöster Form aufnehmen; das heißt, diese organischen Partikel müssen durch mikrobielle Enzyme zuerst aufgelöst werden, bevor sie von den Mikroben aufgenommen werden können. Neben diesem Pool an partikulärem organischen Material gibt es auch einen Pool an gelöstem organischen Material, da alle Organismen im Ozean auch direkt oder indirekt gelöste Substanzen über ihre Oberfläche in das Wasser abgeben. Während sich die molekulare Zusammensetzung von partikulärem und gelöstem organischen Material im Oberflächengewässer relativ wenig unterscheidet, wird der Unterschied mit zunehmender Tiefe im Ozean immer größer. Änderungen in der molekularen Zusammensetzung des organischen Materials mit der Tiefe sollten auch Änderungen in den Aufnahmesystemen der Mikroben bedingen, mit denen sie die organischen Moleküle in die Zellen einschleusen.
"Proteinshake"#
In der aktuellen Studie untersuchte ein Team um Kristin Bergauer und Gerhard J. Herndl von der Universität Wien gemeinsam mit KollegInnen aus Odense (Dänemark), Bremen (Deutschland) und Maine (USA) den Stoffwechsel der mikrobiellen Gemeinschaft im Atlantischen Ozean von 100 Meter bis über 4.000 Meter Tiefe. Im Fokus der Arbeit standen Transportproteine, die es den Mikroorganismen ermöglichen, Nährstoffe aus dem umgebenden Meerwasser aufzunehmen. Die ForscherInnen fanden erwartungsgemäß viele Veränderungen in den Transportwegen von organischem Material entlang dieses Tiefenprofils. Überraschenderweise gab es große Ähnlichkeiten in den zellulären Proteinen, die von Mikroben verwendet werden, um organisches Material abzubauen und mikrobielles Leben in der Tiefsee zu unterstützen. “Die Vielfalt dieser Transporter liefert derzeit die besten Hinweise auf die organischen und anorganischen Verbindungen, die tatsächlich von Mikroben aufgenommen werden“, so Gerhard Herndl, der Initiator der Studie.Transportproteine liefern wichtige Hinweise#
Erstaunlich war, dass die Häufigkeit von Transportproteinen mit der Tiefe zunimmt. Die Anzahl dieser Transporter stieg von 23 Prozent in 100 Meter Tiefe auf 39 Prozent in der Tiefsee an. "Wir vermuten, dass trotz der geringeren Konzentration an organischem Material in der Tiefsee heterotrophe Stoffwechselwege essenziell sind. Aufgrund der überraschenden Ähnlichkeit der Transportproteine der Mikroben vom Oberflächengewässer bis in die Tiefsee gehen wir davon aus, dass sich Tiefsee-Mikroben eher von dem Regen an organischen Partikel ernähren als vom Pool an gelöstem organischen Material", so Herndl.Variante "A" oder Variante "B" im Speiseplan – nicht alle brauchen alles#
Außerdem zeigte sich, dass nur wenige Transportproteine von Archaea (zwei Prozent gegenüber 69 Prozent von Bakterien) stammen, was darauf hindeutet, dass heterotrophe Bakterien den Konsum von organischem Material in der gesamten Wassersäule des Atlantischen Ozeans dominieren. "Bei den marinen Thaumarchaeota kann man nur wenige Transporter für organisches Material erwarten, da alle bisher kultivierten Thaumarchaeota die Energie aus der Ammoniak-Oxidation und Kohlenstoff aus der CO2 Fixierung gewinnen", erklärt Kristin Bergauer, die Erstautorin der Studie. Folglich produzieren marine Thaumarchaeota fast alle Proteine für den Transport von Ammonium, selbst in Oberflächengewässern.Die Studie über den Abbau organischen Materials in der Tiefsee wurde unter anderem vom Wissenschaftsfonds (FWF) sowie vom European Research Council (ERC) gefördert. Die Arbeit ist Teil der Dissertation von Kristin Bergauer.
Publikation in "PNAS plus":#
"Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics": Kristin Bergauer, Antonio Fernandez-Guerra, Juan A. L. Garcia, Richard R. Sprenger, Ramunas Stepanauskas, Maria G. Pachiadaki, Ole N. Jensen, Gerhard J. Herndlwww.pnas.org/cgi/doi/10.1073/pnas.1708779115
Wissenschaftlicher Kontakt#
Univ.-Prof. Dr. Gerhard J. HerndlDept. of Limnology & Bio-Oceanography
Universität Wien
1090 - Wien, Althanstraße 14 (UZA I)
+43-1-4277-764 31
+43-664-60277-764 31
gerhard.herndl nospam@TUGraz.at @univie.ac.at
Rückfragehinweis#
Mag. Alexandra FreyPressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-175 33
+43-664-60277-175 33
alexandra.frey nospam@TUGraz.at @univie.ac.at