Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
International
The Austrian Business Cycle in the European Context
Page - 99 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 99 - in The Austrian Business Cycle in the European Context

Image of the Page - 99 -

Image of the Page - 99 - in The Austrian Business Cycle in the European Context

Text of the Page - 99 -

99 Not only the proportion of the total variation of the data set ex- plained by the common factors, but also the proportion reflected in each time series is of interest. Table A 7 gives for all three filtering methods the proportion of variation explained by the two com- mon factors reflected by the respective time series. In the case of first-order-differenced data (the FOO section of Table A 6), both common factors are able to explain more than 70 percent of the variance of the series autGV Aex, gerCDE and gerGVAex, which is quite in line with theory. However, the variation of euro area GDP excluding Austria and Germany is only explained to one-half (48 percent) by both factors. In all cases (except in the case of the Austrian financial intermediation, real estate and business service sector), the explanatory power of the common component in- creases by moving from the first-order-difference data to HP- and BK-filtered ones, supporting the view that idiosyncratic cycles are primarily a high-frequency phenomenon. This result can also be obtained by looking at the average over all series given in the bot- tom line or by forming averages over all frequencies up to the second eigen value of Tab/es A 5 a to c. In the BK-filtered data case, the common factors are capable of explaining nearly 70 percent of the variation of the euro area GDP series ( again ex- cluding Austria and Germany). Furthermore, the value for the Aus- trian industrial production has improved considerably to nearly 80 percent. The explanatory power of the two common factors is especially strong for those series responding typically to business cycle movements. This supports the view that the variance repre- sented by the two common factors is close to something that can be considered as the business cycle. Furthermore, the exception- ally low values for some series like the construction industry in Aus- tria and Germany and financial intermediation, real estate and business activities are quite in line with theory which suggests that these sectors have a low connection to the business cycle. As the variation of the common factors represented in each of the series can be regarded as cleaning them by their idiosyncratic variations, the difference between looking at frequency-filtered series alone and series transformed by our dynamic factor model
back to the  book The Austrian Business Cycle in the European Context"
The Austrian Business Cycle in the European Context
Forschungsergebnisse der Wirtschaftsuniversitat Wien
Title
The Austrian Business Cycle in the European Context
Author
Marcus Scheiblecker
Publisher
PETER LANG - lnternationaler Verlag der Wissenschaften
Location
Frankfurt
Date
2008
Language
English
License
CC BY 4.0
ISBN
978-3-631-75458-0
Size
14.8 x 21.0 cm
Pages
236
Keywords
Economy, Wirtschaft, WIFO, Vienna
Categories
International
Recht und Politik

Table of contents

  1. Zusammenfassung V
  2. Abstract IX
  3. List of figures and tables XV
  4. List of abbreviations XVII
  5. List of variables XIX
  6. 1. Research motivation and overview 1
  7. 2. The data 7
  8. 3. Methods of extracting business cycle characteristics 13
    1. 3. 1 Defining the business cycle 13
      1. 3. 1 . 1 The classical business cycle definition 13
      2. 3.1.2 The deviation cycle definition 15
    2. 3.2 Isolation of business cycle frequencies 16
      1. 3.2. l Outliers 18
      2. 3.2.2 Calendar effects 20
      3. 3.2.3 Seasonal variations 21
      4. 3.2.4 The trend 23
  9. 4. Identifying the business cycle 41
    1. 4.1 Construction of composite economic indices 42
      1. 4. l . l The empirical NBER approach 42
      2. 4.1 .2 Index models 44
    2. 4.2 Univariate determination of the business cycle 52
  10. 5. Analysing cyclical comovements
    1. 5. 1 Time domain statistics for analysing comovements 55
    2. 5.2 Frequency domain statistics for analysing comovements 56
      1. 5.2.1 Coherence 57
      2. 5.2.2 Phase spectra and mean delay 58
      3. 5.2.3 Dynamic correlation 58
      4. 5.2.4 Cohesion 59
  11. 6. Dating the business cycle 61
    1. 6.1 The expert approaches 63
    2. 6.2 The Bry-Boschan routine 65
    3. 6.3 Hidden Markovian-switching processes 67
    4. 6.4 Threshold autoregressive models 69
  12. 7. Analysis of turning points 71
    1. 7.1 Mean and average leads and lags 71
    2. 7.2 Contingency tab/es for turning points 72
    3. 7.3 The intrinsic lead and lag classification of dynamic factor models 74
    4. 7.4 Concordance indicator 74
    5. 7.5 Standard deviation of the cycle 75
    6. 7.6 Mean absolute deviation 76
    7. 7.7 Triangle approximation 76
  13. 8. Results 79
    1. 8.1 Isolation of business cycle frequencies 79
      1. 8.1.1 First-order differences 79
      2. 8.1.2 The HP filter 80
      3. 8.1.3 The BK filter 80
    2. 8.2 Determination of the reference business cycle 85
      1. 8.2.1 Ad-hoc selection of the business cycle reference series 86
      2. 8.2.2 Determination of the business cycle by a dynamic factor model approach 97
    3. 8.3 Dating the business cycle 104
      1. 8.3.1 Dating the business cycle in the ad-hoc selection framework 104
      2. 8.3.2 Dating the business cycle in the dynamic factor model framework 115
  14. 9. Comparing results with earlier studies on the Austrian business cycle 125
    1. 9.1 Comparing the results with the study by Altissimo et al. (2001) 126
    2. 9.2 Comparing the results with the study by Monch -Uhlig (2004) 128
    3. 9.3 Comparing the results with the study by Cheung -Westermann (1999) 130
    4. 9.4 Comparing the results with the study by Brandner -Neusser (1992) 131
    5. 9.5 Comparing the results with the study by Forni - Hallin -Lippi -Reich/in (2000) 132
    6. 9.6 Comparing the results with the study by Breitung -Eickmeier (2005) 134
    7. 9.7 Comparing the results with the study by Artis - Marcellino - Proietti (2004) 134
    8. 9.8 Comparing the results with the study by Vijselaar -Albers (2001) 140
    9. 9.9 Comparing the results with the study by Artis - Zhang (1999) 142
    10. 9.10 Comparing the results with the study by Dickerson -Gibson -Tsakalotos (1998) 142
    11. 9.11 Comparing the results with the study by Artis - Krolzig - Toro (2004) 143
    12. 9.12 Comparing the results with the dating calendar of the CEPR 146
    13. 9.13 Comparing the results with the study by Breuss ( 1984) 151
    14. 9.14 Comparing the results with the study by Hahn - Walterskirchen ( 1992) 153
    15. 9.15 Comparison of the results of different dating procedures 154
    16. 9 .15.1 Turning point dates of the Austrian business cycle 155
    17. 9 .15.2 Turning point dates of the euro area business cycle 156
  15. 10. Concludlng remarks 161
  16. References 169
  17. Annex 177
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
The Austrian Business Cycle in the European Context