Page - 13 - in Charge Transport in DNA - Insights from Simulations
Image of the Page - 13 -
Text of the Page - 13 -
2.2MolecularDynamicsSimulation
mental results and tabulated in advance for all relevant atoms and their different
binding situations.
Calculatingthenon-bondedparametersforallpairsofatomsinahugebiomolecule
might slowdown the calculation significantly. To resolve this issue, simple cut-off
schemes, like thoseused for thevan-der-Waals interactions, ormore sophisticated
methods, like theparticle-meshEwald (PME)method [51–53] for theelectrostatics,
canbeused tomake the computationof thenon-bonded termsmoreefficient.
Withinitialcoordinatesandawell-definedforcefield, thetotalenergyofamolecule
andgradientsarecalculated. Therefore, it ispossible toperformmoleculardynam-
ics (MD) simulations.
2.2 MolecularDynamicsSimulation
Moleculesandatomsarenotfixedon their equilibriumpositionsatfinite tempera-
tures. Rather, atomsmoveandbondsoscillateoncertain timescales. Thus, it is not
reasonable to investigateonly their static, energy-minimizingconformations, espe-
ciallywhendealingwith largebiomolecules.Moleculardynamic (MD)simulations
are performed to get an idea howmolecules behave in adefined time frame. The
basic idea is to treat themotionsofatoms inaclassicalmanner inorder tocalculate
positions ( ri(t)) andmomenta ( pi(t)) of all atoms in every time step. The result is
a trajectory in thephase spaceof themolecule .
TheMDsimulation is basedonNewton’s classical equationsofmotion [54]
Fi=mi δ2 ri
δt2 (2.2)
where F is the force actingon theatom i and r is the three-dimensional coordinate
of theatom i in thesystem.Asaresult, a systemconsistingofNatomsisdescribed
by3N coordinates.
The forces are calculatedas thenegativegradient of the energy.
Fi=−δE(
ri)δ
ri (2.3)
13
Charge Transport in DNA
Insights from Simulations
- Title
- Charge Transport in DNA
- Subtitle
- Insights from Simulations
- Author
- Mario Wolter
- Publisher
- KIT Scientific Publishing
- Date
- 2013
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0082-7
- Size
- 17.0 x 24.0 cm
- Pages
- 156
- Keywords
- Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
- Categories
- Naturwissenschaften Chemie
Table of contents
- Zusammenfassung 1
- Summary 3
- 1 Introduction 5
- 2 TheoreticalBackground 11
- 3 SimulationSetup 39
- 4 DNAUnderExperimentalConditions 49
- 5 ChargeTransport inStretchedDNA 69
- 6 ChargeTransport inMicrohydratedDNA 79
- 7 AParametrizedModel toSimulateCT inDNA 89
- 8 Conclusion 105
- Appendix 111
- A DNAUnderExperimentalConditions 111
- B CTinMicrohydratedDNA 117
- List ofPublications 137