Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 45 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 45 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 45 -

Image of the Page - 45 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 45 -

3.3DNAunderMechanicalStress number of water molecules, depending upon the length of DNA, were replaced with sodiumcounterions toneutralize thenegatively chargedDNAbackbones. ClassicalMDsimulationswereperformedwith theparm99/BSC0 force-field,[111– 113] and theparameterizationbyÅqvistwasapplied todescribe theNa+ counter- ions.[114] The topologieswere createdwithAmberTools[115] andconverted to the Gromacs formatwithAmbconv.[116]All simulationswereperformedwith a time step of 2 fs with LINCS[117] to constrain the bonds involving hydrogen to their reference lengths. Pilot calculations,performedonnucleobases in thegasphaseas well as ona solvatedoligonucleotides, showed that these constraints affect neither the ionization potentials of the nucleobases nor the electronic couplings between them. The Lennard-Jones interactionswere cut off at 1 nm, and the electrostatics were treatedwith theparticle–meshEwaldmethod [52]. The prepared systems were equilibrated in a multi-step procedure. First of all, a steepest-descentsminimizationwas performed for 100 steps to removepossible badcontacts. Subsequently, the initialvelocities forallatomswererandomlydrawn from a Maxwell–Boltzmann distribution at 10K. The water was heated up first in an NVT simulation of 20 ps length. Here the DNA was weakly coupled to a bath at 10Kand the solvent coupled to a separate bath at 300K. The Berendsen thermostat was used for this purpose.[57] After that, anotherNVT simulation of 20ps lengthwasused tobring the entire system to 300K,with a singleheat bath. Finally, anNPT simulation at 300Kand 1barwasperformedover the interval of 0.5ns. TheNosé–Hoover extended-ensemble thermostatwith a characteristic time of 0.5pswas used to keep the temperature of 300K.[58, 59] InNPT simulations, the Parrinello–Rahman barostatwith characteristic time of 0.5ps and a reference pressure of 1 barwas used.[60] The consecutive production simulationswere run with the same parameters as the last equilibration step. The Gromacs package (versions4.0and4.5)[118,119]wasused for all simulations. 3.3 DNAunderMechanicalStress EachDNAspecieswas stretchedbypulling its3’-ends inoppositedirections. This setupwas inspiredbytheexperimentswhere the3’-endsofdsDNAwerecontacted to the electrodes. To do so, an additional force along the z-axis of the simulation 45
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA