Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 56 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 56 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 56 -

Image of the Page - 56 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 56 -

DNAUnderExperimentalConditions 4.3 IrreversibilityofDNAStretching inSimulations Theexternal forceapplied in thesimulations increases severalordersofmagnitude faster than in the relevant experiments. In addition, the observeddifferent forces needed for the transitionwhendifferent loading rates are applied, provides ahint at the likely irreversibility of the simulated process. So, the important question here iswhat happenswith theDNAoligomerwhen the external force is removed –does thehelical structurerecover? Toinvestigate thispoint, theexternal forcewas removedat several selectedpointsduringeach simulation,whichwas followedby a free simulation of 20 ns. Also, an alternative protocol was usedwith the force beingdecreasedgraduallyby10pN/nsdowntozero insteadof itsabruptremoval. Thepoints of force removal or reversalwere selectedas follows: • A–helix just before the transition to ladder • B–during thehelix–ladder transition • C– freshly established ladder • D– ladder just before thefinal collapseof thedouble strand The timeand force at thesepoints in each simulation isprovided in table4.2. Table4.2: Time (t, in ns) and force (F, in pN) at the point in a stretching simulation that reverse simulationsA, B, C andDwere started, for theDNA species studied. Sim. A5 A9 A13 G5 G9 G13 t F t F t F t F t F t F A 13.5 81 12.0 72 16.0 96 16.5 99 22.0 132 30.0 180 B 15.0 90 16.0 96 18.0 108 17.3 104 23.3 140 31.5 189 C 16.5 99 21.0 126 20.0 120 18.0 108 24.0 144 33.0 198 D 42.0 252 60.0 360 65.0 390 65.0 390 95.0 570 132.0 792 Thetypicaldistance/forceprofile inbothkindsofsimulationsispresentedinfigure 4.8, and the character of theobservedfinal structures is summarized in table4.3. When the external force was switched off in points before or during the helix– ladder transition (A, B), thehelix structurewas alwayspreserved/recovered. This 56
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA