Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 47 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 47 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 47 -

Image of the Page - 47 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 47 -

3.4MicrohydratedDNA Table3.3: Number ofwatermolecules in themicrohydrated systems. system watersper A5 A9 A13 ratio to full phosphate basepair G5 G9 G13 hydration Dry1 24 ca. 43 384 576 768 1/10 Dry2 12 ca. 21 192 288 384 1/20 Dry3 6 ca. 11 96 144 192 1/40 Dry4 3 ca. 5 48 72 96 1/80 To keep the water molecules nearest to the backbone, the distance between the O-atoms of thewatermolecules and the P-atoms of the backbonewasmeasured andthenearestwatermoleculeswerekept. Thisway, fourdifferentmicrohydration stateswere created. These obtained systems contained from 24 down to 3water moleculesperphosphate. SeeTable3.3 foranoverviewof thesystemsnamingand theamountofwater left in the simulationbox. This corresponded to the removal of ca. 9/10, 19/20, 39/40 and 79/80 of water fromthefullyhydratedsystem,respectively. TheappearanceoftheDNAhydration shells constructed in thiswaycanbe inferred from3.6. These microhydrated systems in vacuo were simulated in an NVT ensemble. Pi- lot simulations showed some unwanted effects when using cut-offs to deal with the electrostatics in the simulation of these clusters. Since Gromacs is not able to calculate Ewald inmulti-threaded environment, periodic boundary conditions were applied tomakeuseof theparticle-meshEwaldmethod. Toavoidundesired boundary effects the box sizewas increased here to (11,5 nm)3. To obtain stable MDsimulations of thesemolecular clusters, itwas necessary to decrease the time stepto1 fs. Again, theparm99/BSC0 forcefieldwasused, inspiteof the fact that it hadbeendeveloped for simulations in condensedphase. In theparameterization, the atomic charges are overestimatedby 15–20%systematically, compensating for themissingdescriptionof electronic polarization effects. Thismaybe regardedas anerror. However, the aim is to characterize effects of robustnature, andso this is most likelynotan issue. Indeed, itwasshownthat the interactionsbetweennucleic acidbuildingblocks aredescribedwell.[120,121] 47
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA