Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 59 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 59 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 59 -

Image of the Page - 59 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 59 -

4.4EffectsofLowHydration Figure4.9: ThemicrohydratedDNAspeciesG13 (Dry1)adoptsamorecompact(barrel- like) structure in an MD simulation with no stabilizing external force. (Side aswell as topview; surroundingwatermoleculesnot shown for clar- ity.) The difference between polyA and polyG can be explained by the larger hydra- tion of polyA and its known inability to assume anA-like structure. Indications of these effects are generally visible in the shorterDNAoligomers, too. TheDNA oligomers lose thehelical character in theDry3 systems,andtheycollapse todisor- deredcompactstructure inDry4,whereeventhehydrogenbondingofnucleobases disappears. All of these quite different conformational transitionsmaybe seen as apursuit to assumeamore compact conformation,undergivenconditions. Theobserved irregularitiesmaybeovercomeby the applicationof amoderate ex- ternalpulling forceactingagainst the tendencyof the insufficientlyhydratedDNA double strand to bend. For this reason aswell as to emulate the setupof conduc- tivityexperiments, furthersimulationswereperformedwithanadditionalexternal force applied to theO3’ atomson the3’-endsof eachDNAstrand. Themagnitude of this forcewas chosen in such away that theDNAwould retain straight helical double-strandedstructure,which turnedout tobe50kJ/mol·nm=83pNforDry1 and100kJ/mol·nm=166pNforDry2. Selectedhelicalparameterswereevaluated along these simulations, see table 4.5. In the Dry3 andDry4 systems, no helical 59
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA