Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 82 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 82 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 82 -

Image of the Page - 82 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 82 -

ChargeTransport inMicrohydratedDNA The energetics of hole transport in DNA is determined by the IP of the nucle- obases. Apart from themean value of the IP, the hole transport is determined by thefluctuationsof the IP in time. The std. deviation of the IP was found to be 0.3–0.4 eV in previous studies of fully solvated DNA.[124, 125] An important observation for the microhydrated systems is that themagnitude of these IP fluctuations is identical to that in fully solvatedDNA.Thestd.deviationof the IP is0.29–0.30eVfor thesystemsDry1and Dry2, as compared to 0.31 eVobtained for the fully hydrated system in thiswork. See appendix B.3 for an complete overviewof the IP of the single nucleobases in the investigated sequences. Clearly, the fluctuations of the IP in fully hydrated DNAare caused by the nearest hydration shell(s) of the nucleobases – thewater molecules in contact orvery close to thenucleobases. Table6.2: ESP (inV) induced at a nucleobase in theGToligo by the various parts of themolecular environment. Environment ESP inducedby DNA water Na+ Full −25.25 +6.91 +18.85 Dry1 −26.91 +0.76 +26.25 Dry2 −28.19 +0.84 +27.45 The IPofnucleobases aredrivenby the electricfield inducedby themolecular en- vironment [124,125]. Therefore, theelectrostaticpotential (ESP) inducedbytheen- vironmentonanucleobase in thevariouslyhydratedGToligowascalculated.[124] Muchthesameasthefluctuationsof theIP, thefluctuationsofESPremainthesame evenupondehydration. Amounting to0.30,0.29and0.29Vfor the fullyhydrated, Dry1 andDry2 systems, respectively. This is an evidence that thedecisiveportion of electric effect comes fromthenearest hydration shell of thenucleobases. Further, theESPonanucleobasewasdecomposed tocontributions inducedby the components of themolecular environment,which areDNAbackboneswith all of theothernucleobases,watermolecules, andNa+ ions. SeeTab.6.2 foranoverview of the ESP of these groups. Interestingly, the magnitude of ESP induced by the ions increases, as does theESP inducedby theDNAbackbones (so that it ismore negative). 82
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA