Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 83 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 83 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 83 -

Image of the Page - 83 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 83 -

6.2ChargeTransferParameters Figure6.2: Distributions of the distances ofNa+ ions and phosphate groups from the nucleobases in theAAoligo. To explain this, the distances of theNa+ ions aswell as of the phosphate groups in thebackbones (whichare theonlychargedgroups in thesystem) fromtheDNA helical axiswere calculated. Thehelical axiswas obtained for everyMDsnapshot with the SCHNAaP algorithm implemented in 3DNA.[107, 126] The probability distributions of these distances are shown in Fig. 6.2. See appendix B.5 for val- ues of all groups asmeanvalues over time andatoms for thedifferent sequences. Apparently, as the amount of water in the system decreases, both the ions and thephosphategroups approach closer to theprobednucleobase. This is notunex- pected for theNa+ ions as these are confined to theDNAhydration shell, which becomesmore restricted spatially upon thepartial removal ofwater. Remarkably, the structure of the DNA changes in away that the phosphate groups approach closer to thenucleobases, too, contributing to the overall ESP in the oppositeway. As for theESP component due towater,which reduces effectively upondehydra- tion, themost likely interpretation is that theDNAhydration shell is affected by theapproachingNa+ ions. Thus, thewatermoleculeshavea largerpositivecharge to shield, and the decreasing ESP corresponds actually to increasing negative po- larization rather thandepolarization. Summarizing the findings so far, there are two distinct effects of dehydration on the electronic structure. First, the change of geometrical structure of DNA due to desolvation leads to a change of the EC,which are not affected by the solvent substantially. On the other hand, the IP are affected largely not by the structure of nucleobases andbasepairs, rathermostly by thefluctuations of theESPdue to solvent dynamics. These solvent fluctuationswere shown to have amajor impact onDNA conductivity,[44] therefore, a similar solvent effect onDry1 andDry2 is expectedas found for the fullyhydratedDNA.[44] 83
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA