Page - 91 - in Charge Transport in DNA - Insights from Simulations
Image of the Page - 91 -
Text of the Page - 91 -
7.1Creating theElectronicCouplings
So, eachof theobtainedprobabilitydistributionsofECofall tenpossiblebase-pair
stepswasfittedwitha functionof the following form:
P(EC)= 1
σ √
2π · (
exp [ −(EC−μ) 2
2σ2 ]
+exp [ −(−EC−μ) 2
2σ2 ])
(7.1)
Table 7.1 shows the resulting parameters σ, thewidth, and μ, themean value, of
thedistributions.
Table7.1: Mean values and standard deviations of the EC estimated for the different
base-pair steps. X\Y – purine–pyrimidine step, X/Y – pyrimidine–purine
step,X|Y–purine–purine step. See also figure5.6 for a graphical illustra-
tion.
base-pair step A|A A/A A\A A|G G|A G/A A\G G|G G/G G\G
σ [eV] 0.0388 0.0204 0.0473 0.0428 0.0375 0.0180 0.0287 0.0297 0.0086 0.0218
μ [eV] 0.0480 0.0480 0.0497 0.0022 0.0008 0.0059 0.0002 0.0182 0.0089 0.0148
Now, time series of EC with these probability distributions have to be created,
to be used in the parametrized model. The approach presented here is to draw
random values from these distributions. Therefore, the following algorithm was
implemented into theCTmodel.
A standard linear congruential randomnumber generator is applied, which gen-
erates series of uniformly distributed randomnumber in the interval (0,1). These
uniformlydistributedrandomnumbersarenowtransformedtoanormaldistribu-
tion.
The cumulativedistribution functionof thenormaldistributionhas the form:
Φ(x)= 1√
2π ∫ x
−∞ exp [ t2
2 ]
dt= 1
2 [
1+erf (
x√
2 )]
(7.2)
The inverse of this function, called theprobit function, is used to get thedistribu-
tion of the electronic couplings. The probit function can be expressed in terms of
the inverse error function.
Φ−1(x)= √ 2erf−1(2x−1) (7.3)
91
Charge Transport in DNA
Insights from Simulations
- Title
- Charge Transport in DNA
- Subtitle
- Insights from Simulations
- Author
- Mario Wolter
- Publisher
- KIT Scientific Publishing
- Date
- 2013
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0082-7
- Size
- 17.0 x 24.0 cm
- Pages
- 156
- Keywords
- Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
- Categories
- Naturwissenschaften Chemie
Table of contents
- Zusammenfassung 1
- Summary 3
- 1 Introduction 5
- 2 TheoreticalBackground 11
- 3 SimulationSetup 39
- 4 DNAUnderExperimentalConditions 49
- 5 ChargeTransport inStretchedDNA 69
- 6 ChargeTransport inMicrohydratedDNA 79
- 7 AParametrizedModel toSimulateCT inDNA 89
- 8 Conclusion 105
- Appendix 111
- A DNAUnderExperimentalConditions 111
- B CTinMicrohydratedDNA 117
- List ofPublications 137