Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 28 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 28 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 28 -

Image of the Page - 28 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 28 -

TheoreticalBackground Inthesimplestapproachtopropagatethiswave-functionnowistoperformaBorn– Oppenheimer simulation.Here theHamiltonian isdiagonalized toyield thewave- function coefficients am directly. But, thewave-function can also be propagatedwithmore sophisticated non-adia- batic schemes,whichwill bedescribed in the followingchapter2.6. Application toDNA Thepartof theDNAwhichis theeasiest tooxidizearethenucleobases,particularly thepurinesadenine (A)andguanine (G).Guaninehas the lowest ionizationpoten- tialofallnucleobaseswhile theIPofadenine is0.4eVhigher[77,78]. Sincecytosine (C) and thymine (T) have an ionization potential about 1 eV higher, G andA are supposed tobe thechargecarryingsites inDNAincaseofhole transport/transfer. Therefore, the hole transfer inDNA in thismodel occurs between theHOMOof guanine and adenine nucleobases, which form a linear chain of charge carrying sites. Issueswith thisQM/MMapproach Thismulti-scale approach suffers from certain issues. Someof themare resulting fromtheassumptionsmade, andsomeare inherent to theappliedmethods. Firstly, the treatment of the single fragments involves approximations that require discussion. When thepoint charges of theMMsystemareupdated after a stepof dynamics, theCoulomb interactions of those atomsdo change. But, these interac- tions are not evaluated for neighbors andnext-neighbors in theMMcalculations. Thisway, thechangeofCoulombinteractions isneglectednearlycompletely.More- over, theparametersof thebondsandanglesdonot changeeitheras theyarefixed values of the used force-field. This way, the inner-sphere reorganization energy (RE, see also chapter 2.6.1) is neglected completely. To account for this essential flaw, the inner-sphereRE is introduced as an empirical contribution to the energy of the system.Quantumchemical calculationsyieldavalue forλi of about0.23 eV for adenineandguanine [79]. 28
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA