Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Page - 63 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 63 - in Charge Transport in DNA - Insights from Simulations

Image of the Page - 63 -

Image of the Page - 63 - in Charge Transport in DNA - Insights from Simulations

Text of the Page - 63 -

4.5EffectsofDecreased IonContent original amount ofwater, respectively)were stripped further of 1/4, 1/2 and 3/4 of the original number of sodium ions aswell as of all of them. MD simulations were thenperformedwith no external force. The observed structural changes are described in table4.6. Table4.6: Appearance of the Dry1 complexes after MD with a decreased number of sodium ions. B-like – long helical structure with a small diameter, A-like – shorter helical structure with a large diameter, ladder – parallel linear double-stranded structure. 3/4 ions 1/2 ions 1/4 ions 0 ions A5 B-like B-like ladder separation A9 B-like B-like ladder separation A13 B-like B-like ladder separation G5 A-like B-like ladder ladder G9 A-like B-like ladder separation G13 A-like B-like ladder separation In the complexeswithmorewater (Dry1), thehelical double-stranded structureof DNAwas preserved even upon the removal of half of the ions. Interestingly, the helical structure of the studiedDNAspecies ismore stablewith a slightly smaller number of ions thannecessary for neutralization. The transition to a ladder struc- ture occurredonly after the removal of further 1/4of theoriginal numberof ions. These structures resemble those reported in previous simulations of DNA with similar charge state[122] closely. Even though the simulated systems were very different otherwise (no water whatsoever, no counterions and phosphate groups neutralizedpartially). Eventually, theDNAstrands separatedwhenall of the ions were removed. The structure ofmorepoorlyhydratedDNAoligomers (Dry2)wasmoreprone to perturbations causedby the removal of ions, as the ladder structurewasobserved already with 1/2 of the amount of ions necessary for neutralization. Neverthe- less, the separationofDNAstrands tookplace only after the complete removal of counterions. Another interesting effect is that the polyGoligomers passed to aB- like conformationwhen1/2of the ionswere removed. Thismaybe interpreted in termsof the significanceof counterions tomaintain theA-likeDNAconformation. 63
back to the  book Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Title
Charge Transport in DNA
Subtitle
Insights from Simulations
Author
Mario Wolter
Publisher
KIT Scientific Publishing
Date
2013
Language
English
License
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Size
17.0 x 24.0 cm
Pages
156
Keywords
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Categories
Naturwissenschaften Chemie

Table of contents

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA