Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Aufklärung der Struktur von Metallclusterionen in der Gasphase mittels Elektronenbeugung
Page - 58 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 58 - in Aufklärung der Struktur von Metallclusterionen in der Gasphase mittels Elektronenbeugung

Image of the Page - 58 -

Image of the Page - 58 - in Aufklärung der Struktur von Metallclusterionen in der Gasphase mittels Elektronenbeugung

Text of the Page - 58 -

58 Strukturen von Metallclusterionen Au12Co− Der Trend zu offeneren Strukturen wird beim Entfernen eines weiteren Goldatoms für den Cluster Au12Co– fortgesetzt. In der Strukturenpopulation der DFT-Rechnung gibt es eine signifikante Verschiebung der Motive: Die für dreizehn Goldatome ungünstige flach-dreidimensionale Clusterstruktur Au13Co−–(7) bildet durch Entfernen eines Atoms das neue globale Minimum (1). Dieses liegt deutlich unter der kubokaedrischen Verbin- dung (4) (siehe Abbildung 32). Der energetische Abstand der zwei Bindungsmotive flach-dreidimensional und Kuboktaeder hat sich damit von Au13Co− nach Au12Co− rela- tiv um ca. 0,4 eV verschoben. Ebenso wird lediglich +0,04 eV über (1) eine quasi- planare C2v-Struktur vorhergesagt, die sich aus drei 2D-Teilstücken zusammensetzt. 1. C1, 0,00 eV, Rw = 18,4% 2. C2v, 0,03 eV, Rw = 5,1% 3. C2v, 0,04 eV, Rw = 24,2% 4. Oh, 0,15 eV, Rw = 15,9% Abbildung 32: Die energetisch günstigsten Isomere von Au12Co− mit Symmetrien, relativen Energien und Rw-Werten. Das fett markierte Isomer kann zugeordnet werden. Die experimentelle Zuordnung gelingt mit einem kompakt-ikosaedrischen Strukturmo- tiv. Die aus dieser Gruppe energetisch günstige Struktur (Isomer 2) liegt +0,03eV über der berechneten günstigsten Gleichgewichtsstruktur. Mit einem Rw-Wert von 5,1% hebt sie sich deutlich von den anderen Isomeren (Rw > 15%) ab (siehe Abbildung 33).
back to the  book Aufklärung der Struktur von Metallclusterionen in der Gasphase mittels Elektronenbeugung"
Aufklärung der Struktur von Metallclusterionen in der Gasphase mittels Elektronenbeugung
Title
Aufklärung der Struktur von Metallclusterionen in der Gasphase mittels Elektronenbeugung
Author
Thomas Rapps
Publisher
KIT Scientific Publishing
Date
2012
Language
German
License
CC BY-NC-ND 3.0
ISBN
978-3-86644-878-0
Size
21.0 x 29.7 cm
Pages
390
Keywords
Elektronenbeugung, Nano-Metallcluster, Gasphase, massenselektiv, Strukturbestimmung
Categories
Naturwissenschaften Chemie

Table of contents

  1. Abstract
  2. 1 Einleitung 1
  3. 2 Elektronenbeugung in der Gasphase (GED) 5
    1. 2.1 Einführung in die Streutheorie 7
    2. 2.2 Streuung am Molekül 9
    3. 2.3 Anwendung der Streutheorie 10
    4. 2.4 Näherungen 11
  4. 3 Das TIED-Experiment 15
    1. 3.1 Das Vakuumsystem 17
    2. 3.2 Die Clusterquelle 17
    3. 3.3 Das Flugzeitmassenspektrometer 20
    4. 3.4 Der Massenfilter 21
    5. 3.5 Die Paulfalle 23
    6. 3.6 Durchführung des Beugungsexperiments 27
    7. 3.7 Datenanalyse 29
  5. 4 Heuristik der Clusterstrukturfindung 35
    1. 4.1 Dichtefunktionaltheorie 35
    2. 4.2 Genetischer Algorithmus (GA) 42
  6. 5 Strukturen von Metallclusterionen 45
    1. 5.1 Kleine Käfigstrukturen magnetisch dotierter Goldcluster (M@Aun−, M = Fe, Co, Ni; n = 12–15) 45
    2. 5.2 Ladungsabhängige Strukturunterschiede von kleinen Bismutclustern 68
    3. 5.3 Palladiumcluster (Pdn−/+, 13 ≤ n ≤ 147) 91
    4. 5.4 Wasserstoffadsorptionseigenschaften von massenselektierten Palladiumclustern 128
    5. 5.5 3d-/4d-/5d-Übergangsmetallcluster aus 55 Atomen 152
    6. 5.6 Strukturelle Entwicklung später Übergangsmetallcluster (Co, Ni, Cu, Ag) 184
  7. 6 Der Temperatureinfluss auf die Gleichgewichtsstruktur von Metallclusterionen 205
    1. 6.1 Kupfercluster (Cun−, 19 ≤ n ≤ 71) 205
    2. 6.2 Thermisch induzierte Oberflächenrekonstruktion beinahe geschlossenschaliger Kupfercluster (Cu55±x−, x = 1–2) 226
    3. 6.3 Aluminiumcluster (Aln−, 55 ≤ n ≤ 147) 240
  8. 7 Statistische Untersuchungen zur Datenanalyse 259
  9. 8 Zusammenfassung und Ausblick 273
    1. Anhang A: Beugungsdaten weiterer Metallclusterionen 279
      1. A.1 Entwicklung der Clusterstruktur verschiedener Elemente der Gruppe 14 (Si, Sn, Pb) 279
      2. A.2 Schmelzen des Clusters Pb55− 283
      3. A.3 Der Zinncluster Sn13+ 379 286
      4. A.4 Strukturmotiv von Clustern des bcc-Elements Tantal 288
      5. A.5 Thermisch induzierte Oberflächenrekonstruktion beinahe geschlossenschaliger Silbercluster (Ag55±x−, x = 1–2) 290
      6. A.6 Möglicher Strukturübergang bei Silberclusterionen (Agn−, n = 80–98) 295
      7. A.7 Reine Goldcluster größer 20 Atome 296
    2. Anhang B: Apparative Entwicklung 305
      1. B.1 Erhöhung der Sensitivität 305
      2. B.2 Designstudie zur Auflösungserhöhung des TOF-Instruments 306
    3. Anhang C: Einfluss der Fallengeometrie auf große Streuwinkel 311
    4. Anhang D: CNA-Analyse des zehnatomigen Strukturensembles 313
  10. Abbildungsverzeichnis 321
  11. Tabellenverzeichnis 331
  12. Literaturverzeichnis 333
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Aufklärung der Struktur von Metallclusterionen in der Gasphase mittels Elektronenbeugung