Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Induktionsfügen von thermoplastischen Faserverbundwerkstoffen
Seite - 212 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 212 - in Induktionsfügen von thermoplastischen Faserverbundwerkstoffen

Bild der Seite - 212 -

Bild der Seite - 212 - in Induktionsfügen von thermoplastischen Faserverbundwerkstoffen

Text der Seite - 212 -

212 ANHANGA. ZEICHNUNGEN,TABELLENUNDERKLÄRUNGEN Da der Effekt von der Elektronengeschwindigkeit und somit von der Temperatur abhängig ist, lässt sich bei erhöhter Temperatur eine geringere Verstärkung beobachten [71]. Dieser Effekt ist auch als Curier-Effekt bekannt und lässt sichwie folgt beschreiben [71]: χM= C T (A.1) Cbeschreibt hierbei dieCurier-Konstante und ist temperaturabhängig [71]. Ferromagnetismus Der Begriff Ferromagnetismus beschreibt neben einer Hauptklasse desMagnetismus die Eigenschaft desWerkstoffesmagnetisiert zuwerden.Hierfür sinddie so genanntenWeißschenBezirke verantwort- lich.Wirkt einMagnetfeld auf einen ferromagnetischenStoff, sowird ein auf dieElektronen imAtom resultierendesmagnetischesMoment induziert,welchewiederumKräfte imWerkstoffhervorrufen, die zu einer bereichsweisen Ausrichtung innerhalb desWerkstoffes führen. Diese Bereiche werdenWeiß- sche Bezirke genannt. [71] Wirkt kein magnetisches Feld auf einen solchenWerkstoff, ist die Ausrichtung statistisch verteilt. Somit ist derWerkstoff unmagnetisch.Wird einMagnetfeld angelegt und dessen Flussdichte stetig erhöht, so richten sichnachundnachdieWeißschenBezirke aus, bis schließlichderWerkstoffmagne- tisiert ist. Dieser Prozess ist bis zu einem gewissenGrad reversibel.Wird dieDauer undFlussdichte auf diesenWerkstoff jedoch weiter erhöht, stellt sich eine irreversibleMagnetisierung ein.Wird das Magnetfeld,welches aufdenWerkstoffwirkt, umgepolt, so kannderWerkstoffwieder entmagnetisiert bzw. mit gegenläufiger Polarität versehen werden. Da dieser Vorgang nicht einer linearen Steigung gehorcht und verlustbehaftet ist, liegt für solcheWerkstoffe eineHysteresekurve, wie sie beispielhaft inAbbildungA.11 zu sehen ist, vor. [71] Aus derKurve, in der die FlussdichteB undPolarisation J AbbildungA.11:Ausrichtung innerhalbderWeißschenBezirke unddieHysteresekurve ferromagneti- scherWerkstoffe nach [71]. über derFeldstärkeHaufgetragen ist, lassen sich dieRemanenzflussdichte unddieEnergie ermitteln, die zurMagnetisierung bzw.Ummagnetiserung notwendig ist. [71] Werkstoffe, die eine große Fläche zwischen denHysteresekurven besitzen und bei denen viel Energie zur Magnetisierung notwendig ist, werden als magnetisch hart bezeichnet [71]. Bei geringer Fläche liegt ein entsprechendmagnetischweicherWerkstoff vor. WieauchbeimParamagnetismus istderFerromagnetismus temperaturabhängig.HoheTemperaturen führen zuhoherBewegungsenergie derElektronen indenAtomenund somit zu einerbeeinträchtigten Ausrichtung imMagnetfeld. Dies führt zu einer schwächerenAusbildung derWeißschenBezirke und
zurück zum  Buch Induktionsfügen von thermoplastischen Faserverbundwerkstoffen"
Induktionsfügen von thermoplastischen Faserverbundwerkstoffen
Titel
Induktionsfügen von thermoplastischen Faserverbundwerkstoffen
Autor
Thomas Forstner
Verlag
Verlag der Technischen Universität Graz
Ort
Graz
Datum
2020
Sprache
deutsch
Lizenz
CC BY 4.0
ISBN
978-3-85125-770-0
Abmessungen
21.0 x 29.7 cm
Seiten
274
Kategorie
Technik

Inhaltsverzeichnis

  1. Abkürzungen XIV
  2. Symbolverzeichnis XVI
  3. 1 Einleitung 1
    1. 1.1 Faserverbund-Werkstoffe imLeichtbau 1
    2. 1.2 Potential thermoplastischer Faser-Kunststoff-Verbunde 2
    3. 1.3 FaserverbundgerechteVerbindungstechnik 5
  4. 2 Stand derTechnik 11
    1. 2.1 ThermoplastischeKunststoffe 11
      1. 2.1.1 Grundlagen undEinteilung derKunststoffe 11
      2. 2.1.2 Werkstoffeigenschaften vonThermoplasten 12
      3. 2.1.3 FaserverstärkteThermoplaste 16
      4. 2.1.4 Herstellverfahren vonHalbzeugen undBauteilenmit thermoplastischerMatrix 21
      5. 2.1.5 Konsolidierung vonThermoplasten 22
      6. 2.1.6 Betrachtung des Schmelzschweißprozesses bei Thermoplasten 23
      7. 2.1.7 Prüfmethoden 23
      8. 2.1.8 Ermüdungsverhalten 29
      9. 2.1.9 ThermischeKunststoffkennwerte 31
      10. 2.1.10 BildgebendeAnalyseverfahren 32
      11. 2.1.11 Schadensanalyse 33
    2. 2.2 Grundlagen der induktivenErwärmung 33
      1. 2.2.1 Erzeugung des elektromagnetischenFeldes 33
      2. 2.2.2 Magnetismus 37
      3. 2.2.3 Anlagentechnik 38
      4. 2.2.4 PhysikalischeProzessbeschreibung 42
    3. 2.3 Erwärmung carbonfaserverstärkterKunststoffe 44
      1. 2.3.1 FaserspezifischeErwärmungsmechanismen 45
      2. 2.3.2 Anwendung 47
    4. 2.4 Schweißbarkeit 48
    5. 2.5 Modelle zurmathematischenBeschreibung 51
      1. 2.5.1 NumerischeBerechnungs- und Simulationsmodelle 51
      2. 2.5.2 AnalytischeBerechnungsmodelle 51
  5. 3 Aufgabenstellung 53
    1. 3.1 Problembeschreibung 53
    2. 3.2 Zielsetzung undLösungsansatz 53
  6. 4 Systemtechnik undVersuchsaufbau 55
    1. 4.1 Messtechnik 55
      1. 4.1.1 Taktile Temperaturmessung 55
      2. 4.1.2 Thermografie 57
      3. 4.1.3 Pyrometer 63
      4. 4.1.4 Kraft- undGeschwindigkeitsmessung 63
    2. 4.2 Prozessanalyse 63
    3. 4.3 Auslegung der Systemkomponenten 65
      1. 4.3.1 Systemtechnik zur induktivenErwärmung 67
      2. 4.3.2 Systemtechnik zurRekonsolidierung 70
      3. 4.3.3 Geregelte Prozessführung 82
      4. 4.3.4 Prozessdatenerfassung 87
      5. 4.3.5 Versuchsaufbau 87
    4. 4.4 Diskussion 96
  7. 5 Plastifizierung derMatrix 97
    1. 5.1 Funktionsweise der Erwärmung 97
    2. 5.2 ExperimentelleUntersuchung 98
      1. 5.2.1 PyrometrischeTemperaturmessung 98
      2. 5.2.2 Einfluss der Systemparameter 106
      3. 5.2.3 Einfluss der Prozessparameter 125
      4. 5.2.4 Wärmetransportverhalten 131
      5. 5.2.5 Erwärmungsverhaltenwährend des kontinuierlichen Schweißprozesses 133
    3. 5.3 Optimierung derProzessparameter 139
      1. 5.3.1 Modelle zurBeschreibung derEnergieeinbringung 139
      2. 5.3.2 Verwendetes Lösungsverfahren 141
      3. 5.3.3 Durchführung derOptimierung 144
      4. 5.3.4 Validierung desOptimierungsmodells 144
      5. 5.3.5 DynamischesBerechnungsmodell 145
    4. 5.4 Prozessfenster 145
    5. 5.5 Diskussion 149
  8. 6 Rekonsolidierung und Schweißnahteigenschaften 151
    1. 6.1 Rekonsolidierung teilkristalliner Polyamide 151
      1. 6.1.1 Wärmetransportmechanismenwährend derRekonsolidierung 151
      2. 6.1.2 ExperimentelleUntersuchung derKonsolidierungsparameter 152
      3. 6.1.3 Ablauf derRekonsolidierung 153
    2. 6.2 Eigenschaften der Schweißverbindung 155
      1. 6.2.1 Oberflächeneigenschaften 155
      2. 6.2.2 Bruchflächen 155
      3. 6.2.3 Analyse derVerbindungsfestigkeit 157
      4. 6.2.4 Eigenschaften desGrundwerkstoffs 158
      5. 6.2.5 Einfluss der Schweißrichtung 163
      6. 6.2.6 Schadensanalyse der Induktionsschweißnaht 163
    3. 6.3 Diskussion 169
  9. 7 FertigungstechnischeUmsetzung 171
    1. 7.1 Fügeaufgabe 171
      1. 7.1.1 Zugänglichkeitsuntersuchung 172
      2. 7.1.2 Qualität der Schweißverbindung 172
    2. 7.2 Bewertung derGerätetechnik 173
    3. 7.3 Bewertung derProzesseignung undFähigkeit 173
    4. 7.4 Wirtschaftlichkeitsbetrachtung 174
  10. 8 Zusammenfassung 177
    1. Literaturverzeichnis 178
    2. Abbildungsverzeichnis 189
    3. Tabellenverzeichnis 197
    4. A Zeichnungen, Tabellen undErklärungen 199
      1. A.1 Werkstoffeigenschaften undDatenblätter 199
        1. A.1.1 ZustandsbereicheThermoplaste 199
        2. A.1.2 Probekörpermit In-Situ-Thermoelemente 202
        3. A.1.3 Kennzahlen zumWärmetransport 203
        4. A.1.4 Prepreg 204
        5. A.1.5 Thermoplaste 207
        6. A.1.6 Vlieswerkstoffe 209
        7. A.1.7 Ermüdungsverhalten und dynamischeWerkstoffauslegung 211
        8. A.1.8 Magnetisums 211
      2. A.2 Numerische Lösungsverfahren 213
      3. A.3 Datenblätter und Spezifikation derAnlagentechnik 215
      4. A.4 Berechnungen zu den Strömungszuständen in derKonsolidierungsrolle 224
      5. A.5 Komponenten undProgrammumgebung derVersuchs-anlage 231
      6. A.6 Optimierungsmethode 234
      7. A.7 Festigkeitsuntersuchung 245
      8. A.8 Prozessfenster 246
      9. A.9 Prozessfähigkeitsuntersuchung 247
    5. B Veröffentlichungen 249
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Induktionsfügen von thermoplastischen Faserverbundwerkstoffen