Seite - 88 - in Stoßprobleme in Physik, Technik und Medizin - Grundlagen und Anwendungen
Bild der Seite - 88 -
Text der Seite - 88 -
88 3 KontaktmechanischeGrundlagen
24. Griffith,A.A.(1921).Thephenomenaofruptureandflowinsolids.PhilosophicalTransactions
of the RoyalSociety of London,Series A,221, 163–198.
25. Johnson,K.L.,Kendall,K.,&Roberts,A.D. (1971).Surfaceenergyandthecontactofelastic
solids.Proceedings of the RoyalSociety of London,Series A,324, 301–313.
26. Derjaguin,B.V.,Muller,V.M.,&Toporov,Y.P. (1975).Effectofcontactdeformationson the
adhesion of particles.Journal ofColloidand Interface Science, 53(2), 314–326.
27. Bradley, A. I. (1932). The cohesive force between solid surfaces and the surface energy of
solids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
13(86), 853–862.
28. Tabor, D. (1977). Surface forces and surface interactions. Journal of Colloid and Interface
Science, 58(1), 2–13.
29. Maugis, D. (1992). Adhesion of spheres: The JKR-DMT transition using a Dugdale model.
Journal ofColloidand Interface Science, 150(1), 243–269.
30. Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and
Physics ofSolids,8(2), 100–104.
31. Greenwood, J. A. (1997). Adhesion of elastic spheres. Proceedings of the Royal Society of
London, Series A,453, 1277–1297.
32. Feng, J. Q. (2000). Contact behavior of spherical elastic particles: A computational study of
particleadhesionanddeformations.ColloidsandSurfacesA:PhysicochemicalandEngineering
Aspects,172(1–3), 175–198.
33. Muller, V. M., Yushchenko, V. S., & Derjaguin, B. V. (1980). On the influence of molecular
forcesonthedeformationofanelasticsphereanditsstickingtoarigidplane.JournalofColloid
and InterfaceScience, 77(1), 91–101.
34. Greenwood, J. A., & Johnson, K. L. (1998). An alternative to the Maugis model of adhesion
between elastic spheres. Journal ofPhysics D: AppliedPhysics,31(22), 3279–3290.
35. Barthel, E. (1998). On the Description of the Adhesive Contact of Spheres with Arbitrary
Interaction Potentials. Journal ofColloidand Interface Science, 200(1), 7–18.
36. Ciavarella, M., Joe, J., Papangelo, A., & Barber, J. R. (2019). The role of adhesion in contact
mechanics. Journal of the Royal Society Interface, 16, 20180738. https://doi.org/10.1098/rsif.
2018.0738.
37. Barquins, M., & Maugis, D. (1982). Adhesive contact of axisymmetric punches on an ela-
stic half-space: The modified Hertz-Huber’s stress tensor for contacting spheres. Journal de
Mécanique Théoriqueet Appliquée, 1(2), 331–357.
38. Kesari, H., & Lew, A. J. (2012). Adhesive frictionless contact between an elastic isotropic
half-space anda rigidaxi-symmetricpunch. Journal ofElasticity,106(2), 203–224.
39. Argatov, I. I., Li, Q., Pohrt, R., & Popov, V. L. (2016). Johnson-Kendall-Roberts adhesive
contact for a toroidal indenter. Proceedings of the Royal Society of London, Series A, 472,
20160218. https://doi.org/10.1098/rspa.2016.0218.
40. Popov, V. L. (2018). Solution of adhesive contact problem on the basis of the known solution
for nonadhesive one. Facta Universitatis, Series Mechanical Engineering, 16(1), 93–98.
41. Ciavarella, M. (2018). An approximate JKR solution for a general contact, including rough
contacts. Journal of theMechanics and PhysicsofSolids,114, 209–218.
42. Popov,V.L. (2017).Surfaceprofileswith zeroandfiniteadhesion forceandadhesion instabi-
lities. https://arxiv.org/abs/1707.07867.
43. Giannakopoulos, E. A., Lindley, T. C., & Suresh, S. (1998). Aspects of equivalence between
contactmechanicsandfracturemechanics:Theoreticalconnectionsandalife-predictionmetho-
dology for fretting-fatigue.ActaMaterialia,46(9), 2955–2968.
44. Savkoor, A. R., & Briggs, G. A. D. (1977). The effect of tangential force on the contact of
elasticsolids inadhesion.Proceedingsof theRoyalSocietyofLondon,SeriesA,356,103–114.
Stoßprobleme in Physik, Technik und Medizin
Grundlagen und Anwendungen
- Titel
- Stoßprobleme in Physik, Technik und Medizin
- Untertitel
- Grundlagen und Anwendungen
- Autor
- Emanuel Willert
- Verlag
- Springer Vieweg
- Ort
- Berlin
- Datum
- 2020
- Sprache
- deutsch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-662-60296-6
- Abmessungen
- 17.3 x 24.6 cm
- Seiten
- 258
- Schlagwörter
- Engineering, Mechanics, Mechanics, Applied, Mechanics, Applied mathematics, Engineering mathematics
- Kategorien
- Naturwissenschaften Physik
- Technik
Inhaltsverzeichnis
- 1 Einleitung 1
- Literatur 3
- 2 Kinematik und Dynamik räumlicher Stöße von Kugeln 5
- Literatur 14
- 3 Kontaktmechanische Grundlagen 17
- 3.1 Fundamentallösung des homogenen elastischen Halbraums 17
- 3.2 Reibungsfreier Normalkontakt ohne Adhäsion 20
- 3.3 Reibungsfreier Normalkontakt mit Adhäsion 25
- 3.4 Tangentialkontakt 38
- 3.5 Torsionskontakt 45
- 3.6 Viskoelastizität 52
- 3.6.1 Einführung 52
- 3.6.2 Das allgemeine linear-viskoelastische Materialgesetz 53
- 3.6.3 Berücksichtigung der Kompressibilität (Normalkontakt) 55
- 3.6.4 Rheologische Modelle 56
- 3.6.5 Behandlung viskoelastischer Kontaktprobleme nach Lee und Radok 61
- 3.6.6 Erweiterung auf beliebige Belastungsgeschichten 62
- 3.7 Funktionale Gradientenmedien 63
- 3.8 Plastizität 73
- 3.9 Zusammenfassung 84
- Literatur 87
- 4 Die Methode der Dimensionsreduktion in der Kontaktmechanik 95
- Literatur 110
- 5 Quasistatischer Normalstoß axialsymmetrischer Körper 113
- Literatur 153
- 6 Quasistatische ebene Stöße von Kugeln 157
- Literatur 181
- 7 Räumliche Effekte in elastischen Stößen von Kugeln 183
- Literatur 196
- 8 Ausgewählte Anwendungen von Stoßproblemen 197
- Literatur 222
- 9 Anhang 229
- Literatur 238
- Stichwortverzeichnis 239