Seite - 142 - in Stoßprobleme in Physik, Technik und Medizin - Grundlagen und Anwendungen
Bild der Seite - 142 -
Text der Seite - 142 -
							142 5 QuasistatischerNormalstoßaxialsymmetrischerKörper
Abb.5.16 Stoßzahl fürden
Normalstoßeineszylindrischen
Flachstempels aufein
kompressibles
Kelvin-Voigt-Mediumals
Funktionderdimensionsfreien
DämpfungD1 fürverschiedene
statischePoissonzahlenbei
gleicherVolumen-und
Scherviskosität.Diedünne
durchgezogeneLinie
bezeichnetden
inkompressiblenGrenzfall
(sieheauchAbb.5.3) −2 −1.5 −1 −0.5 0 0.5 1
0
0.2
0.4
0.6
0.8
1
log10D1
ν= 0,3
ν= 0,4
ν= 0,45
ν= 0,49
z
5.5 Elasto-PlastischerNormalstoßohneAdhäsion
Da für viele metallische Werkstoffe schon Stoßgeschwindigkeiten der Größenordnung
0,01m/s ausreichen, um plastische Deformationen zu initiieren [35, S.130], laufen die
KollisionenindenallermeistenFällennichtideal-elastischab,sondernsndmiteinemgewis-
sen plastischenEnergieverlust verbunden. Zum (elasto-)plastischenNormalstoß zwischen
KugelnoderzwischeneinerKugelmiteinemHalbraumgibtesdabei inzwischeneinerecht
umfangreicheLiteratur.
Weir und Tallon [36] untersuchten den elastisch-ideal-plastischen Zusammenstoß von
Kugeln und stellten unter anderem theoretisch und experimentell fest, dass bei wieder-
holtenKollisionen die Stoßzahlwegen der permanentenDeformation aus den vorherigen
Zusammenstößen steigt. In einerSerie vonPublikationen [37–39] studiertenWuet al. das
Problemmithilfe derFinite-Elemente-Methode (FEM)undbestimmtenunter anderemdie
Stoßgeschwindigkeit, die nötig ist, um den Bereich unbeschränkten plastischen Fließens
zuerreichen.Dabei solchhohenGeschwindigkeitendynamischeEffekte relevantwerden,
zogen sie auch dieDissipation durch dieAbstrahlung elastischerWellen inBetracht und
kamendabeizuvergleichbarenErgebnissenwieHunter [4].Thorntonetal. [40]verglichen
dasModellvonThornton fürdenelasto-plastischenStoßmitmehrerenkontaktmechanisch
nicht rigorosenFeder-undFeder-Dämpfer-Modellen.
Wenndie kollidierendenTeilchen sehr klein sind,mussmanbei derUntersuchungdes
Stoßproblems die Skaleneffekte derKristallplastizität berücksichtigen, das Fließkriterium
ist dann nicht-lokal. Für denFall, dass die gemesseneHärte umgekehrt proportional zum
Kontaktradius ist13, löstenLyashenkoundPopov [42] das entsprechende elasto-plastische
Normalstoßproblem.
13BeieinemparabolischenIndenterbedeutetdies,dassdasQuadratderHärteumgekehrtproportional
zurEindrucktiefe ist; dieseAbhängigkeit ist fürdieMikroindentierungcharakteristisch [41,S.44]).
					
				
						Stoßprobleme in Physik, Technik und Medizin
							Grundlagen und Anwendungen
								
				- Titel
 - Stoßprobleme in Physik, Technik und Medizin
 - Untertitel
 - Grundlagen und Anwendungen
 - Autor
 - Emanuel Willert
 - Verlag
 - Springer Vieweg
 - Ort
 - Berlin
 - Datum
 - 2020
 - Sprache
 - deutsch
 - Lizenz
 - CC BY 4.0
 - ISBN
 - 978-3-662-60296-6
 - Abmessungen
 - 17.3 x 24.6 cm
 - Seiten
 - 258
 - Schlagwörter
 - Engineering, Mechanics, Mechanics, Applied, Mechanics, Applied mathematics, Engineering mathematics
 - Kategorien
 - Naturwissenschaften Physik
 - Technik
 
Inhaltsverzeichnis
- 1 Einleitung 1
 - Literatur 3
 - 2 Kinematik und Dynamik räumlicher Stöße von Kugeln 5
 - Literatur 14
 -  3 Kontaktmechanische Grundlagen 17
			
				
- 3.1 Fundamentallösung des homogenen elastischen Halbraums 17
 - 3.2 Reibungsfreier Normalkontakt ohne Adhäsion 20
 - 3.3 Reibungsfreier Normalkontakt mit Adhäsion 25
 - 3.4 Tangentialkontakt 38
 - 3.5 Torsionskontakt 45
 -  3.6 Viskoelastizität 52
			
				
- 3.6.1 Einführung 52
 - 3.6.2 Das allgemeine linear-viskoelastische Materialgesetz 53
 - 3.6.3 Berücksichtigung der Kompressibilität (Normalkontakt) 55
 - 3.6.4 Rheologische Modelle 56
 - 3.6.5 Behandlung viskoelastischer Kontaktprobleme nach Lee und Radok 61
 - 3.6.6 Erweiterung auf beliebige Belastungsgeschichten 62
 
 - 3.7 Funktionale Gradientenmedien 63
 - 3.8 Plastizität 73
 - 3.9 Zusammenfassung 84
 
 - Literatur 87
 - 4 Die Methode der Dimensionsreduktion in der Kontaktmechanik 95
 - Literatur 110
 - 5 Quasistatischer Normalstoß axialsymmetrischer Körper 113
 - Literatur 153
 - 6 Quasistatische ebene Stöße von Kugeln 157
 - Literatur 181
 - 7 Räumliche Effekte in elastischen Stößen von Kugeln 183
 - Literatur 196
 - 8 Ausgewählte Anwendungen von Stoßproblemen 197
 - Literatur 222
 - 9 Anhang 229
 - Literatur 238
 - Stichwortverzeichnis 239