Seite - 237 - in Stoßprobleme in Physik, Technik und Medizin - Grundlagen und Anwendungen
Bild der Seite - 237 -
Text der Seite - 237 -
9.4 QuellcodefürviskoelastischenschiefenStoßmitGleiten 237
23 kz = 4*dx; % Steifigkeit z
24 kx = 8/3*dx; % Steifigkeit x
25 cont = zeros(1,N); % = 1: Element in Kontakt
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 %%%%%%%%%%%%%% Zeititeration (explizites Euler-Verfahren) %%%%%%%%
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 while true;
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 %%%%%%%%%%%%%%%%%%%%% Normalkontakt %%%%%%%%%%%%%%%%%%%%%%%%%%
32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 uzm = uzm + vz*dt; % neue Verschiebung z
34 uz = uzm - g; % neue Feder-Verschiebung
35 if vz > 0 % Kompressionsphase
36 cont = (uz > 0); % Kontakt Kompression
37 uz = uz.*cont; % neg. Werte loeschen
38 fz = (G*uz + eta*vz*cont)*kz; % neue Elementkraefte
39 else % Restitutionsphase
40 fz = (G*uz.*cont + eta*vz*cont)*kz;
41 cont = (fz > 0); % Kontakt Restitution
42 fz = fz.*cont; % neg. Werte loeschen
43 end
44 if sum(cont) == 0
45 break; % Stoss beendet
46 end
47 Fz = 2*sum(fz); % gesamte Normalkraft
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 %%%%%%%%%%%%%%%%%%%% Tangentialkontakt %%%%%%%%%%%%%%%%%%%%%%%
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 ux = ux.*cont + vxk*dt*cont; % ux bei no-slip
52 fx = (G*ux + eta*vxk*cont)*kx; % Kraefte bei no-slip
53 sl = (abs(fx) > mu*fz); % = 1: Element gleitet
54 st = (1 - sl).*cont; % = 1: Element haftet
55 uxs = (eta*uxa.*sl + mu*dt/kx*fz.*sl.*sign(fx))/(G*dt + eta);
56 % Verschiebung der gleitenden Elemente (aus Kraft bekannt)
57 vxs = (uxs - uxa.*sl)/dt; % Geschw. mit Gleiten
58 fx = fx.*st + (G*uxs + eta*vxs)*kx; % Kraefte mit Gleiten
59 ux = ux.*st + uxs; % korrigierte ux
60 uxa = ux; % Aktualisierung uxa
61 Fx = 2*sum(fx); % gesamte Reibkraft
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %%%%%%%%%%%%%%%%%%% makroskopische Dynamik %%%%%%%%%%%%%%%%%%%
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65 vz = vz - Fz*dt/M; % neue Geschwindigkeit z
66 vxk = vxk - Fx*dt/M/K; % neue Geschwindigkeit x
67 end
68 COR = [-vz/vz0 -vxk/vxk0]; % Stosszahlen
Stoßprobleme in Physik, Technik und Medizin
Grundlagen und Anwendungen
- Titel
- Stoßprobleme in Physik, Technik und Medizin
- Untertitel
- Grundlagen und Anwendungen
- Autor
- Emanuel Willert
- Verlag
- Springer Vieweg
- Ort
- Berlin
- Datum
- 2020
- Sprache
- deutsch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-662-60296-6
- Abmessungen
- 17.3 x 24.6 cm
- Seiten
- 258
- Schlagwörter
- Engineering, Mechanics, Mechanics, Applied, Mechanics, Applied mathematics, Engineering mathematics
- Kategorien
- Naturwissenschaften Physik
- Technik
Inhaltsverzeichnis
- 1 Einleitung 1
- Literatur 3
- 2 Kinematik und Dynamik räumlicher Stöße von Kugeln 5
- Literatur 14
- 3 Kontaktmechanische Grundlagen 17
- 3.1 Fundamentallösung des homogenen elastischen Halbraums 17
- 3.2 Reibungsfreier Normalkontakt ohne Adhäsion 20
- 3.3 Reibungsfreier Normalkontakt mit Adhäsion 25
- 3.4 Tangentialkontakt 38
- 3.5 Torsionskontakt 45
- 3.6 Viskoelastizität 52
- 3.6.1 Einführung 52
- 3.6.2 Das allgemeine linear-viskoelastische Materialgesetz 53
- 3.6.3 Berücksichtigung der Kompressibilität (Normalkontakt) 55
- 3.6.4 Rheologische Modelle 56
- 3.6.5 Behandlung viskoelastischer Kontaktprobleme nach Lee und Radok 61
- 3.6.6 Erweiterung auf beliebige Belastungsgeschichten 62
- 3.7 Funktionale Gradientenmedien 63
- 3.8 Plastizität 73
- 3.9 Zusammenfassung 84
- Literatur 87
- 4 Die Methode der Dimensionsreduktion in der Kontaktmechanik 95
- Literatur 110
- 5 Quasistatischer Normalstoß axialsymmetrischer Körper 113
- Literatur 153
- 6 Quasistatische ebene Stöße von Kugeln 157
- Literatur 181
- 7 Räumliche Effekte in elastischen Stößen von Kugeln 183
- Literatur 196
- 8 Ausgewählte Anwendungen von Stoßproblemen 197
- Literatur 222
- 9 Anhang 229
- Literatur 238
- Stichwortverzeichnis 239