Page - 155 - in Stoßprobleme in Physik, Technik und Medizin - Grundlagen und Anwendungen
Image of the Page - 155 -
Text of the Page - 155 -
Literatur 155
31. Brilliantov,N.V.,Pimenova,A.V.,&Goldobin,D.S. (2015).Adissipative forcebetweencol-
lidingviscoelasticbodies:Rigorousapproach.EPLEurophysicsLetters,109(1),14005.https://
doi.org/10.1209/0295-5075/109/14005.
32. Willert,E.,Leroy,J.-E.,Satora,M.,&Scholtyssek,Y.(2018).Theinfluenceofcompressibilityon
the restitution coefficient for viscoelastic spheres in low-velocity normal impacts. https://arxiv.
org/abs/1806.06540.
33. Tschoegl,N.W.,Knauss,W.G.,&Emri, I. (2002).Poisson’s ratio in linearviscoelasticity–A
critical review.Mechanics ofTime-Dependent Materials, 6(1), 3–51.
34. Yee,A. F.,&Takemori,M.T. (1982).Dynamic bulk and shear relaxation in glassy polymers.
I. experimental techniquesandresultsonPMMA.JournalofPolymerScience,PartB:Polymer
Physics, 20(2), 205–224.
35. Stronge,W.J. (2000). Impact Mechanics.Cambridge:CambridgeUniversityPress.
36. Weir, G., &Tallon, S. (2005). The coefficient of restitution for normal incident, low velocity
particle impacts.Chemical Engineering Science, 60(13), 3637–3647.
37. Li,L.Y.,Thornton,C.,&Wu,C.Y.(2000).Impactbehaviourofelastoplasticsphereswitharigid
wall.Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 214(8), 1107–114.
38. Wu,C.Y.,Li,L.Y.,&Thornton,C. (2003).Reboundbehaviourof spheres forplastic impacts.
International Journal of Impact Engineering,28(9), 929–946.
39. Wu,C.Y.,&Li,L.Y.,Thornton,C. (2005).Energydissipationduringnormal impactofelastic
andelasticplastic spheres. International Journalof Impact Engineering, 32(1–4), 593–604.
40. Thornton, C., Cummins, S. J., & Cleary, P.W. (2013). An investigation of the comparative
behaviour of alternative contact forcemodels during inelastic collisions.Powder Technology,
233, 30-46.
41. Popov,V.L., Starcˇevic´, J.,&Willert, E. (2019).Materialtheorie: Vorlesungsskript Sommerse-
mester 2019.Berlin:TechnischeUniversitätBerlin.
42. Lyashenko, I. A.,&Popov,V. L. (2018). Dynamicmodel of elastoplastic normal collision of
sphericalparticlesundernonlocalplasticity.Physics of the SolidState, 60(3), 566–570.
43. Thornton,C. (1997).Coefficientof restitutionforcollinearcollisionsofelastic-perfectlyplastic
spheres.Journalof AppliedMechanics, 64(2), 383–386.
44. Jackson,R.L.,Green, I.,&Marghitu,D.B. (2010). Predicting the coefficient of restitutionof
impactingelastic-perfectlyplastic spheres.Nonlinear Dynamics, 60(3), 217–229.
45. Lifshitz, J.M.,&Kolsky, H. (1964). Some experiments on anelastic rebound. Journal of the
Mechanics andPhysics ofSolids, 12(1), 35–43.
46. Wong,C.X.,Daniel,M.C.,&Rongong, J.A. (2009).Energydissipationpredictionofparticle
dampers.Journal ofSound andVibration,319(1–2), 91–118.
47. Kharaz,A.H.,&Gorham,D.A. (2000).Astudyof the restitution coefficient in elastic-plastic
impact.PhilosophicalMagazine Letters, 80(8), 549–559.
48. Kim,O.V.,&Dunn, P. F. (2007).Amicrosphere-surface impactmodel for implementation in
computationalfluiddynamics.AerosolScience, 38(5), 532–549.
49. Ghanbarzadeh,A.,Hassanpour,A.,&Neville,A. (2019).Anumericalmodel forcalculationof
the restitution coefficient of elastic-perfectly plastic and adhesive bodieswith rough surfaces.
Powder Technology, 345, 203–212.
50. Pohrt, R., & Popov, V. L. (2015). Adhesive contact simulation of elastic solids using local
mesh-dependent detachment criterion in boundary elementsmethod.Facta niversitatis, Series
Mechanical Engineering, 13(1), 3–10.
51. Wu,Y.C.,&Adams,G.G.(2008).Plasticyieldconditionsforadhesivecontactsbetweenarigid
sphereandanelastichalf-space.JournalofTribology,131(1), 011403.https://doi.org/10.1115/
1.3002329.
Stoßprobleme in Physik, Technik und Medizin
Grundlagen und Anwendungen
- Title
- Stoßprobleme in Physik, Technik und Medizin
- Subtitle
- Grundlagen und Anwendungen
- Author
- Emanuel Willert
- Publisher
- Springer Vieweg
- Location
- Berlin
- Date
- 2020
- Language
- German
- License
- CC BY 4.0
- ISBN
- 978-3-662-60296-6
- Size
- 17.3 x 24.6 cm
- Pages
- 258
- Keywords
- Engineering, Mechanics, Mechanics, Applied, Mechanics, Applied mathematics, Engineering mathematics
- Categories
- Naturwissenschaften Physik
- Technik
Table of contents
- 1 Einleitung 1
- Literatur 3
- 2 Kinematik und Dynamik räumlicher Stöße von Kugeln 5
- Literatur 14
- 3 Kontaktmechanische Grundlagen 17
- 3.1 Fundamentallösung des homogenen elastischen Halbraums 17
- 3.2 Reibungsfreier Normalkontakt ohne Adhäsion 20
- 3.3 Reibungsfreier Normalkontakt mit Adhäsion 25
- 3.4 Tangentialkontakt 38
- 3.5 Torsionskontakt 45
- 3.6 Viskoelastizität 52
- 3.6.1 Einführung 52
- 3.6.2 Das allgemeine linear-viskoelastische Materialgesetz 53
- 3.6.3 Berücksichtigung der Kompressibilität (Normalkontakt) 55
- 3.6.4 Rheologische Modelle 56
- 3.6.5 Behandlung viskoelastischer Kontaktprobleme nach Lee und Radok 61
- 3.6.6 Erweiterung auf beliebige Belastungsgeschichten 62
- 3.7 Funktionale Gradientenmedien 63
- 3.8 Plastizität 73
- 3.9 Zusammenfassung 84
- Literatur 87
- 4 Die Methode der Dimensionsreduktion in der Kontaktmechanik 95
- Literatur 110
- 5 Quasistatischer Normalstoß axialsymmetrischer Körper 113
- Literatur 153
- 6 Quasistatische ebene Stöße von Kugeln 157
- Literatur 181
- 7 Räumliche Effekte in elastischen Stößen von Kugeln 183
- Literatur 196
- 8 Ausgewählte Anwendungen von Stoßproblemen 197
- Literatur 222
- 9 Anhang 229
- Literatur 238
- Stichwortverzeichnis 239